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1    Introduction 

Multichip modules (MCMs) incorporate several microcircuits into a single package, offering 
the potential to increase circuit density to over 100 chips per module package. This technol- 
ogy was first proposed in the Wafer Scale Integration (WSI) Program at Rome Laboratory. 
There are now commercial vendors, including Mercury Supercomputer Systems, Inc., Intel 
Corporation and Honeywell Incorporated, developing and supplying MCMs. There are varied 
implementations of WSI, but with the same goal of increasing the electronic circuit density, 
the reliability and the module performance. While MCMs hold potential for delivering the 
computational density required for timely processing of large amounts of data, the reliability 
assessment of MCMs is a challenging task due to the high complexity [1] of modeling the 
behavior in inhomogeneous multi-material media. Material interfaces are a major source of 
singularities. Inherent complexity, high unit cost and low production levels make traditional 
statistical based methods of testing impractical. The solution is to develop the reliability 
assessment process during the design stages. An important component of this effort is the 
finite element thermal and stress analysis of the multichip design. In fact, this is the critical 
component in terms of speed and accuracy. Since flaws in a design tend to occur at material 
interfaces, the accurate resolution of the thermal diffusion and induced stress effects at these 
singular interfaces is of great importance. 

We have carried out a combined research and implementation project to evaluate the 
feasibility of our solution and implementation methodologies for creating a software tool 
for analyzing possible failures in the design stages of MCMs. One result of this effort is 
the development of a computational technology base for the solution of the initial value 
problem for the 2-dimensional heat diffusion equation in a finite, composite multimaterial 
region. Within this computational framework, we have also developed and implemented 
3-dimensional computational cores based on FFT routines incorporating global data sym- 
metries. Implementations were made on single processor Pentium, 4 parallel processor i860 
and the multichip P6. 

We have made the following technology transfers. 

• Dr. John Hines of Wright Laboratory has agreed to beta test our existing and future 
codes for the purpose of insuring relevance and usability. 

• We gave an invited presentation on our work at the University of North Carolina 
conference on "Wavelets, relations with operators and applications," held 24-28 July. 

• Visited engineers (D. Holzhauer et al) of Rome Laboratory at Griffiss AFB. We dis- 
cussed the capabilities and limitations of the existing software, IMCMA (Intelligent 
Multichip Module Analyzer), developed at Griffiss AFB. We have thus established a 
working relationship with Mr. D. Holzhauer et al. The significance of this relation- 
ship was two fold: IMCMA provides validation of our methods and codes; IMCMA is 
unique in its capability to address the currently most important geometry of flip chip 
configuration. 

• Presented our results to scientists (Mr. Lyke et al) at Phillips Laboratory, Kirtland 
AFB. 



The persons supported by and contributed to this project are Drs. M An, J. Weiss and 
J. Byrnes of Prometheus and Professor R. Tolimieri and Mr. D. Wahl of CCNY/CUNY. 

2     Solving the Heat Diffusion Equation. 

We have used an adaptation of finite element analysis (FEA) procedure incorporating wavelet 
bases. Being both compactly supported and orthogonal, wavelets combine the advantages of 
finite element, splines and Fourier spectral methods. Due to active research in the theory of 
wavelets, there now exist methods for exact evaluation of functional of compactly supported 
wavelets required for correct application of the Galerkin procedures. 

The time-dependent, heat diffusion equation, 

(Dt - V k V +d)i> = P, 

describes the evolution of the temperature xj) in some region of interest. For multicomponent 
systems, k and d are, in general, discontinuous at the interfaces of components. The (internal) 
boundary conditions at an interface are [3] 

fc_^ = M£ = M</>~-V>+). 
At an interface there is a jump in temperature if> and its normal derivative, tpa. 

2.1    Compactly supported wavelets 

To describe the class of compactly supported wavelets briefly, let ^ be a solution of the 
scaling relation 

JV-l 

Hx) ~ Yl ak4>{2x - k). 
k=0 

The ak are a collection of coefficients that categorize the specific wavelet basis. The expres- 
sion <f> is called the scaling function. 

The translates of <f> are required to be orthonormal 

/ <f>(x - k)(f>(x - m) = 8k,m. 

From the scaling relation this implies the condition 
N 

/ „ OfcOfc-2m = <!>0m- 
k=0 

For coefficients satisfying the above two conditions, the functions consisting of translates 
and dilations of the scaling function, ^(2Jx — k), form a basis for square integrable functions 
on the real line. 

If only a finite number of the a^ are nonzero then <j> has compact support. 
The compactly supported wavelet is defined by the equation 

*{*) = £(-i)fcai-*<K2z - k). 
The translates of the scaling function and wavelet define orthogonal subspaces, i.e. 

/ <l>(x)i/>(x - m)dx = ^2(-l)kai-kak-2m = 0. 



2.2    The wavelet-Galerkin method 

For a PDE of the form 
F(U,UU---,UX,UXX,-■■) = () 

define the wavelet expansion 
U = "£Uk<f>{x-k). 

An approximation to the solution is defined by 

u= f; uk<f>(x-k). 
k--M 

Thus the solution is projected onto the subspace spanned by 

$(M, N) = {<f>{x -k):k = -M, •••,#}. 

Herein and in what follows, we assume, for simplicity and without loss of generality, that the 
dilation factor 2J has been normalized to 1 by a scale transformation y = 2Jx. In effect, the 
integers are the finest scale. To determine the coefficients of this expansion we substitute 
into the equation and again project the resulting expression onto the subspace $(M, N). 
This uniquely determines the coefficients £/*.. 

The projection requires Uk to satisfy the equations 

J —i 

<j){x - k)F(U, Ut, Ux, ■ ■ -)dx = 0 

for k = —M, ••• ,N. To evaluate this expression we must know the connection coefficients 
of the form 

/ <j)(x)<f>x(x - ki) • • • <f>xx{x — k2) ■ • • dx. 

A typical functional (three term connection coefficient) is 

il(k,j) = / <f>xx(x)<f>x(x - k)(j)(x - j)dx. 

Since the scaling function used to define compact wavelets has a limited number of deriva- 
tives, the numerical evaluation of these expressions is often unstable or inaccurate. We have 
found methods for evaluating the functional exactly based on the scaling relation 

N 

Hx) = J2 ak<i>{ix - k). 
fc=0 

By straightforward manipulations, a system of equations is found for the fi(fc, j). The system 
of equations is generally rank deficient (singular). The rank deficiency is cured and a unique 
solution is obtained by the inclusion of an additional set of linear equations that are obtained 
from the moment equations. The resulting system is non-singular and non-homogeneous and 
has a unique solution that is easily found by standard techniques. One of these techniques 
is derived in [4]. 



2.3    Domain decomposition 

The wavelet-Galerkin and capacitance matrix methods for domain decomposition have been 
carried out by an implicit time differencing and wavelet-Galerkin discretization with the 
capacitance matrix method to impose boundary conditions. 

For the wavelet-Galerkin method we expand k, d, and i/>m in scaling function expansions 

* = £ ]£ hj(f>(x - i)<f>(y - j), 

d = Y, £ di,j<f>(x - 0^(» - i)> 

and apply the Galerkin procedure to determine the coefficients (ipj,k)- To resolve the dis- 
continuities of k and d we use the wavelet transform to find the smooth (large scale) and 
discontinuous (small scale) parts 

d = ds + di. 

In effect, we expand (k,d) into scaling function and wavelet components. The discontinuous 
(wavelet) (ki,di) are localized in a neighborhood of the interface. This process decomposes 
the diffusion operator into smooth and discontinuous parts 

L = v • k V +d = Ls + L{. 

With this representation the implicit time differencing is defined as 

(/ - dtLs)^n+1 = {I + dtLa)^n + dtLi(i/>n+1 + ^n)/2 + P 

and solved by iteration at each time step. 
Implicit time differencing is used to time advance the Galerkin coefficients. The internal 

boundaries cause singularities that are represented by a capacitance matrix term defined 
at the boundary. This is similar to the approach of [3] where a fictitious layer is used to 
represent imperfect contact at interface. Therefore, the interfaces are approximated as sin- 
gularities using the wavelet-Galerkin approximation of the Green's function, desingularizing 
the approximation. 

3    Digital Implementations 

Formulating the implicit time differencing as a convolutional product, solution is found as 
the Fourier transform of the diffusion operator. By the convolution theorem, the convolution 
product is computed as the pointwise product of the Fourier transforms. This requires the 
computation of the 2-dimensional Fourier transform and its inverse for every iteration at each 
time step. Thus, over 90% of the computational burden is carried out by the 2-dimensional 
FFT. 



3.1    Optimized FFT routines 

There exists optimized FFT codes on wide ranges of hardware architectures. In fact, we 
have been developing and implementing many of these codes on distributed and parallel 
architectures based on special and general purpose digital signal processing chips and reduced 
instruction set computers. The availability of optimized FFT codes which act on highly 
flexible input and output data structures was of critical importance for efficient interfacing 
of the Fourier transform with current modeling strategies. 

The 2-dimensional N x N DFT is defined by 

y{ni,n2) = £ £>(*!, *1)e-2*,'<ni*1+'*fc2>/JV,     0 < n^n^h < N. 
k!=0k2=0 

Both the diffusion operator and data at each time step are real valued. Thus the memory 
(or cache) required is exactly 1/2 that of complex data. Algorithm is given to show that the 
required computation is also roughly 1/2. 

Algorithm for real FT 

• Define a complex 2-dimensional array u of size N x (N/2 + 1) from x(ki, k2) by 

u(ku k2) = x(ku2k2) + ix(ku2k2 + 1),     0 < ku k2 < N/2. 

• Compute the iV-point FT along the first dimension of u. 

• Matrix transpose the result using the intermediate symmetry to the array v of size 
N x {N/2 + 1) from u. 

• Compute the iV-point FT along the second dimension. 

• Define a complex 2-dimensional array y by 

2/(nl52*n2)   =    1/2 (v(nun2) + v*(N - m,N - n2)), 

y(na,2*n2 + l)   =    -i/2 (v(nu n2) - v*(N - nuN - n2)), 

0 < m < N,   0<n2< N/2. 

This algorithm as well the one below were implemented with minimum of 2-fold speed 
up over complex-to-complex FFT routines: smaller size data more than made up for the 
overhead in incorporating the symmetry. For computation sizes that are well over the cache 
of the machines, this routine performs many times (up to 20) faster than complex-to-complex 
routines by avoiding memory swapping. 

For the inverse FT, we observed that the Fourier transform of a real sequence is Hermitian 
symmetric, i.e., 

y(N -ni,N-n2) = y*{nun2),     0 < ni,n2 < N. 

Thus again, the required memory and, as we will see, computation required are roughly 1/2. 

Algorithm for Hermitian FT 



• Compute the TV-point inverse FT along the first dimension of y. 

• Define a complex 2-dimensional array u of size N x (N/2 + 1) from the transpose of 
y(kun2) by 

u(kun2)   =   y(2*k1,n2) + iy(2*k1 + l,n2), 

u(kuN-n2)   =   y*{2*k1,n2) + iy*(2*k1 + l,n2), 

0<h< N/2,   0 < n2 < N/2. 

• Compute the iV-point FT along the second dimension of u. 

• Extract the desired result by 

x(2 * ki,k2)   —   real(u(k\, k2)) 

x(2 * k + 1, k2)   =   imag(u(ki,k2)). 

Similar algorithms were developed and implemented for 90°-rotational symmetry with 
comparable performances. 

4    Results and Conclusions 

The goal of the proposed software tool is computational efficiency without trading off 
numerical accuracy. The critical issue determining the applicability of the software tool 
is portability and scalability of its implementation so as to interface with already existing 
technology. To this end, we have investigated and concluded that 

• the wavelet-based numerical methods are effective. 

• incorporation of symmetry is effective in terms of accuracy, computational complexity 
and memory requirements. 

• computational and communication complexity of our numerical methods for optimal 
implementation is feasible. 

• many hardware platforms are feasible for carrying out the required computations. 

Our conclusion is based on the following. 

• We have 

Designed, implemented and tested the wavelet-Galerkin solver for the time-dependent, 
two-dimensional and composite, heat equation 

Developed and applied an adaptive implicit time differencing for the time-dependent, 
two-dimensional and composite, heat equation that imposes a monotone convergence. 

Developed a new variant of a higher order, implicit Runge-Kutta time differencing that 
converges faster and with a time step that is two to three larger than the implicit Euler 
time differencing used previously. 



Coded and optimized an alternate formulation of the wavelet-Galerkin solver for the 
time-dependent, two-dimensional and composite, heat equation that allows fast (FFT 
based) algorithms through a consistent wavelet-Galerkin operator splitting. 

We have found that 

— Continuous adjustment of the time step can control the (iterative) implicit time 
step error to be at a prescribed level. 

— For a piecewise constant coefficient of diffusion there exists a fast (FFT based) 
implementation of the full wavelet-Galerkin method. The timings are: the full 
wavelet-Galerkin evaluation procedure is 95% of the program CPU run time. By 
fully taking into account the local tensor product and piecewise constant structure 
of the coefficient of diffusion, the cost of the exact wavelet-Galerkin evaluation 
can be reduced to about 5% of the program CPU run time (for the non-FFT 
evaluations). 

— Variations of the time stepping method can increase the time step size and improve 
convergence for implicit time differencing schemes. 

We have applied optimized, multidimensional, parallel FFT algorithms to implement 
the convolutions and deconvolutions required by the wavelet-Galerkin methods. 

Implemented 2-dimensional real convolution kernels based on higher radix FFT incor- 
porating global symmetries. Performance of the kernel is minimally 2 fold but often 
much more than that of radix 2 FFT. 

Designed 3-dimensional real convolutional kernels that can incorporate symmetries for 
reducing computation and memory requirements. These convolutional kernels are also 
denser than powers of two. 

We have identified computational cores that have been optimally implemented as well 
as those which require optimal implementation. 

Denser than powers of two FFT routines must be implemented. The density will 
be most important to keeping the problem sizes to be minimal required in higher 
dimensions. 

We have formulated a vector-radix multidimensional FFT algorithm [2, 5] for better 
adapting the mesh data decomposition structure. Mesh data decomposition is a more 
natural and efficient domain decomposition method for parallelizing our code. Com- 
patibility of the vector-radix algorithm with various possible symmetries was one of 
the parameters in our formulation. 

We have begun the development of multichip module benchmarks for differing input 
geometries. 

This benchmark was tested for a two-component system separated by a narrow gap 
on a low diffusion background. The calculation is nearly as fast as that for the single 
component system done previously. 
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